Part Number Hot Search : 
PEB3558 B39162B 5504DCR 12000 3A033 E2502H39 CMO3EBMC AZ393M
Product Description
Full Text Search
 

To Download HRFZ44N Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 HRFZ44N
Data Sheet June 1999 File Number
4752
49A, 55V, 0.022 Ohm, N-Channel UltraFET Power MOSFET
This N-Channel power MOSFET is manufactured using the innovative UltraFETTM process. This advanced process technology achieves the lowest possible on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching converters, motor drivers, relay drivers, lowvoltage bus switches, and power management in portable and battery-operated products. Formerly developmental type TA75329.
Features
* 49A, 55V * Simulation Models - Temperature Compensated PSPICE(R) and SABER(c) Electrical Models - Spice and Saber Thermal Impedance Models - www.semi.Intersil.com/families/models.htm * Peak Current vs Pulse Width Curve * UIS Rating Curve * Related Literature - TB334, "Guidelines for Soldering Surface Mount Components to PC Boards"
Symbol
D
Ordering Information
PART NUMBER HRFZ44N PACKAGE TO-220AB BRAND HRFZ44N
G
NOTE: When ordering, use the entire part number.
S
Packaging
JEDEC TO-220AB
SOURCE DRAIN GATE DRAIN (FLANGE)
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. UltraFETTM is a trademark of Intersil Corporation. PSPICE(R) is a registered trademark of MicroSim Corporation. SABER(c) is a Copyright of Analogy, Inc. http://www.intersil.com or 407-727-9207 | Copyright (c) Intersil Corporation 1999
HRFZ44N
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified 55 55 20 49 160 0.227 120 0.8 -55 to 175 300 260 UNITS V V V A A A2s W W/oC oC
oC oC
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .UIS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE: 1. TJ = 25oC to 150oC. 2. Repetitive rating: pulse width limited by maximum junction temperature.
Electrical Specifications
PARAMETER OFF STATE SPECIFICATIONS
TC = 25oC, Unless Otherwise Specified SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current
BVDSS IDSS
ID = 250A, VGS = 0V (Figure 11) VDS = 50V, VGS = 0V VDS = 45V, VGS = 0V, TC = 150oC
55 -
-
1 250 100
V A A nA
Gate to Source Leakage Current ON STATE SPECIFICATIONS Gate to Source Threshold Voltage Drain to Source On Resistance THERMAL SPECIFICATIONS Thermal Resistance Junction to Case Thermal Resistance Junction to Ambient SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time GATE CHARGE SPECIFICATIONS Total Gate Charge Gate Charge at 10V Threshold Gate Charge Gate to Source Gate Charge Reverse Transfer Capacitance
IGSS
VGS = 20V
VGS(TH) rDS(ON)
VGS = VDS, ID = 250A (Figure 10) ID = 25A, VGS = 10V (Figure 9)
2 -
0.019
4 0.022
V
RJC RJA
(Figure 3) TO-220
-
-
1.25 62
oC/W oC/W
tON td(ON) tr td(OFF) tf tOFF
VDD = 30V, ID 25A, RL = 1.2, VGS = 10V, RGS = 9.1 (Figures 18, 19)
-
12 58 33 33 -
105 100
ns ns ns ns ns ns
Qg(TOT) Qg(10) Qg(TH) Qgs Qgd
VGS = 0V to 20V VGS = 0V to 10V VGS = 0V to 2V
VDD = 30V, ID 25A, RL = 1.2 Ig(REF) = 1.0mA (Figures 13, 16, 17)
-
60 35 2.0 4 14
75 43 2.5 -
nC nC nC nC nC
2
HRFZ44N
Electrical Specifications
PARAMETER CAPACITANCE SPECIFICATIONS Input Capacitance Output Capacitance Reverse Transfer Capacitance CISS COSS CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 12) 1060 405 95 pF pF pF TC = 25oC, Unless Otherwise Specified SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Specifications
PARAMETER Source to Drain Diode Voltage Reverse Recovery Time Reverse Recovered Charge SYMBOL VSD trr QRR ISD = 25A ISD = 25A, dISD/dt = 100A/s ISD = 25A, dISD/dt = 100A/s TEST CONDITIONS MIN TYP MAX 1.25 72 120 UNITS V ns nC
Typical Performance Curves
1.2 POWER DISSIPATION MULTIPLIER 1.0 ID, DRAIN CURRENT (A) 0.8 0.6 0.4 0.2 0 0 25 125 50 75 100 TC , CASE TEMPERATURE (oC) 150 175 60 50 40 30 20 10 0 25 50 75 100 125 150 175 TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE
2 1 THERMAL IMPEDANCE ZJC, NORMALIZED DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJC x RJC + TC 10-3 10-2 t, RECTANGULAR PULSE DURATION (s) 10-1 100 101
SINGLE PULSE 0.01 -5 10 10-4
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
3
HRFZ44N Typical Performance Curves
1000
(Continued)
TC = 25oC
IDM, PEAK CURRENT (A)
FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: I = I25 175 - TC 150
VGS = 10V 100
TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10 10-5 10-4 10-3 10-2 t, PULSE WIDTH (s) 10-1 100 101
FIGURE 4. PEAK CURRENT CAPABILITY
500
100 100s
IAS, AVALANCHE CURRENT (A)
TJ = MAX RATED TC = 25oC
500
ID, DRAIN CURRENT (A)
If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
100 STARTING TJ = 25oC
10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) BVDS MAX = 55V 1 1 10
1ms 10ms
STARTING TJ = 150oC
100
200
10 0.001
VDS, DRAIN TO SOURCE VOLTAGE (V)
0.01 1 0.1 tAV, TIME IN AVALANCHE (ms)
10
NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 5. FORWARD BIAS SAFE OPERATING AREA FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
100
ID, DRAIN CURRENT (A)
VGS = 6V 60
ID, DRAIN CURRENT (A)
80
VGS = 20V VGS = 10V VGS = 8V VGS = 7V
100 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX 80 175oC 60 -55oC
40 VGS = 5V 20 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX TC = 25oC 0 1 2 3 4 5 VDS, DRAIN TO SOURCE VOLTAGE (V)
40
20 25oC 0 0 VDD = 15V 7.5
0
1.5 3.0 4.5 6.0 VGS, GATE TO SOURCE VOLTAGE (V)
FIGURE 7. SATURATION CHARACTERISTICS
FIGURE 8. TRANSFER CHARACTERISTICS
4
HRFZ44N Typical Performance Curves
2.5 NORMALIZED DRAIN TO SOURCE ON RESISTANCE
(Continued)
PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX
VGS = 10V, ID = 49A NORMALIZED GATE THRESHOLD VOLTAGE
1.2 VGS = VDS, ID = 250A
2.0
1.0
1.5
0.8
1.0
0.6
0.5 -80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC)
0.4 -80
-40
0
40
80
120
160
200
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE
1.2 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE
ID = 250A
1800 1500 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS = CDS + CGD
1.1
C, CAPACITANCE (pF)
1200 900 600 COSS 300 CRSS CISS
1.0
0.9
0.8 -80
-40
0
40
80
120
160
200
0 0 10 20 30 40 50 60 VDS , DRAIN TO SOURCE VOLTAGE (V)
TJ , JUNCTION TEMPERATURE (oC)
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
10 VGS , GATE TO SOURCE VOLTAGE (V)
8
6
4
2 VDD = 30V 0 0 5 10 15 20
WAVEFORMS IN DESCENDING ORDER: ID = 49A ID = 36.75A ID = 24.5A ID = 12.25A 25 30 35
Qg, GATE CHARGE (nC)
NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
5
HRFZ44N Test Circuits and Waveforms
VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS VGS DUT tP RG IAS VDD tP VDS VDD
+
0V
IAS 0.01
0 tAV
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
VDS RL VDD VDS VGS = 20V VGS
+
Qg(TOT)
Qg(10) VDD VGS VGS = 2V 0 Qg(TH) Qgs Ig(REF) 0 Qgd VGS = 10V
DUT IG(REF)
FIGURE 16. GATE CHARGE TEST CIRCUIT
FIGURE 17. GATE CHARGE WAVEFORM
VDS
tON td(ON) RL VDS
+
tOFF td(OFF) tr tf 90%
90%
VGS
VDD DUT 0
10% 90%
10%
RGS VGS VGS 0 10% 50% PULSE WIDTH 50%
FIGURE 18. SWITCHING TIME TEST CIRCUIT
FIGURE 19. RESISTIVE SWITCHING WAVEFORMS
6
HRFZ44N PSPICE Electrical Model
.SUBCKT HRFZ44N 2 1 3 ;
CA 12 8 1.72e-9 CB 15 14 1.52e-9 CIN 6 8 9.61e-10
LDRAIN
rev 6/19/97
DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD EBREAK 11 7 17 18 58.13 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 IT 8 17 1 LDRAIN 2 5 1e-9 LGATE 1 9 2.86e-9 LSOURCE 3 7 2.69e-9 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 1e-3 RGATE 9 20 1.52 RLDRAIN 2 5 10 RLGATE 1 9 26.9 RLSOURCE 3 7 28.6 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 13.85e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD
S1A 12 S1B CA 13 8 GATE 1 RLGATE
DPLCAP 10
5 RLDRAIN DBREAK 11 + 17 EBREAK 18
DRAIN 2 RSLC1 51 ESLC 50
RSLC2
5 51
ESG + LGATE EVTEMP RGATE + 18 22 9 20 6 8 EVTHRES + 19 8 6
MSTRO CIN LSOURCE 8 RSOURCE RLSOURCE S2A 14 13 S2B 15 17 RBREAK 18 RVTEMP CB + 6 8 EDS 5 8 14 IT 19 7 SOURCE 3
13 + EGS
-
-
VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*135),3.5))} .MODEL DBODYMOD D (IS = 7.50e-13 RS = 5.05e-3 TRS1 = 2.21e-3 TRS2 = 1.02e-6 CJO = 1.51e-9 TT = 4.05e-8 M = 0.5) .MODEL DBREAKMOD D (RS = 2.14e-1 TRS1 = 9.62e-4 TRS2 = 1.23e-6) .MODEL DPLCAPMOD D (CJO = 13.5e-10 IS = 1e-30 N = 10 M = 0.85) .MODEL MMEDMOD NMOS (VTO = 3.25 KP = 2.50 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.52) .MODEL MSTROMOD NMOS (VTO = 3.80 KP = 70.0 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 2.91 KP = 0.06 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 15.2 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1.05e-3 TC2 = 1.94e-7) .MODEL RDRAINMOD RES (TC1 = 8.04e-2 TC2 = 1.37e-4) .MODEL RSLCMOD RES (TC1 = 4.83e-3 TC2 = 1.16e-6) .MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0) .MODEL RVTHRESMOD RES (TC = -3.43e-3 TC2 = -1.63e-5) .MODEL RVTEMPMOD RES (TC1 = -1.35e-3 TC2 = 1.16e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 .ENDS ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -7.90 VOFF= -4.90) VON = -4.90 VOFF= -7.90) VON = -0.50 VOFF= 2.50) VON = 2.50 VOFF= -0.50)
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
7
+
-
RDRAIN 21 16
DBODY
MWEAK MMED
VBAT +
8 22 RVTHRES
HRFZ44N SABER Electrical Model
REV June 1997 template HRFZ44N n2, n1, n3 electrical n2, n1, n3 { var i iscl d..model dbodymod = (is = 7.50e-13, cjo = 1.51e-9, tt = 4.05e-8, m = 0.5) d..model dbreakmod = () d..model dplcapmod = (cjo = 13.5e-10, is = 1e-30, n = 10, m = 0.85) m..model mmedmod = (type=_n, vto = 3.25, kp = 2.50, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 3.80, kp = 70, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 2.91, kp = 0.06, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -7.90, voff = -4.90) sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -4.90, voff = -7.90) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.50, voff = 2.50) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 2.50, voff = -0.50) c.ca n12 n8 = 1.72e-9 c.cb n15 n14 = 1.52e-9 c.cin n6 n8 = 9.61e-10 d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod
LGATE ESG + EVTEMP RGATE + 18 22 9 20 6 MSTRO CIN 8
LDRAIN DPLCAP 10 RSLC1 51 RSLC2 ISCL 6 8 EVTHRES + 19 8 50 RDRAIN 21 16 MWEAK MMED EBREAK + 17 18 RSOURCE RLSOURCE DBODY RLDRAIN RDBREAK 72 DBREAK 11 71 RDBODY 5 DRAIN 2
i.it n8 n17 = 1 l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 2.86e-9 l.lsource n3 n7 = 2.69e-9
GATE 1 RLGATE
LSOURCE 7
SOURCE 3
m.mmed n16 n6 n8 n8 = model=mmedmod, l = 1u, w = 1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l = 1u, w = 1u m.mweak n16 n21 n8 n8 = model=mweakmod, l = 1u, w = 1u
12
S1A 13 8 S1B 13 + EGS 6 8
S2A 14 13 S2B CB + EDS 5 8 8 14 IT 15 17
RBREAK 18 RVTEMP 19 VBAT + 22 RVTHRES
res.rbreak n17 n18 = 1, tc1 = 1.05e-3, tc2 = 1.94e-7 res.rdbody n71 n5 = 5.05e-3, tc1 = 2.21e-3, tc2 = 1.02e-6 res.rdbreak n72 n5 = 2.14e-1, tc1 = 9.62e-4, tc2 = 1.23e-6 res.rdrain n50 n16 = 1e-3, tc1 = 8.04e-2, tc2 = 1.37e-4 res.rgate n9 n20 = 1.52 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 26.9 res.rlsource n3 n7 = 28.6 res.rslc1 n5 n51 = 1e-6, tc1 = 4.83e-3, tc2 = 1.16e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 13.85e-3, tc1 = 0, tc2 = 0 res.rvtemp n18 n19 = 1, tc1 = -1.35e-3, tc2 = 1.16e-6 res.rvthres n22 n8 = 1, tc1 = -3.43e-3, tc2 = -1.63e-5 spe.ebreak n11 n7 n17 n18 = 58.13 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc = 1
CA
equations { i (n51->n50) + = iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/135))** 3.5)) } }
8
HRFZ44N SPICE Thermal Model
REV 23 February 1999
th JUNCTION
HRFZ44N
CTHERM1 th 6 2.80e-3 CTHERM2 6 5 1.00e-2 CTHERM3 5 4 6.80e-3 CTHERM4 4 3 7.00e-3 CTHERM5 3 2 1.60e-2 CTHERM6 2 tl 15.55 RTHERM1 th 6 7.94e-3 RTHERM2 6 5 1.98e-2 RTHERM3 5 4 5.57e-2 RTHERM4 4 3 3.13e-1 RTHERM5 3 2 4.71e-1 RTHERM6 2 tl 6.26e-2
RTHERM1
CTHERM1
6
RTHERM2
CTHERM2
5
SABER Thermal Model
SABER thermal model HRFZ44N template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 2.80e-3 ctherm.ctherm2 6 5 = 1.00e-2 ctherm.ctherm3 5 4 = 6.80e-3 ctherm.ctherm4 4 3 = 7.00e-3 ctherm.ctherm5 3 2 = 1.60e-2 ctherm.ctherm6 2 tl = 15.55 rtherm.rtherm1 th 6 = 7.94e-3 rtherm.rtherm2 6 5 = 1.98e-2 rtherm.rtherm3 5 4 = 5.57e-2 rtherm.rtherm4 4 3 = 3.13e-1 rtherm.rtherm5 3 2 = 4.71e-1 rtherm.rtherm6 2 tl = 6.26e-2 }
RTHERM3 CTHERM3
4
RTHERM4
CTHERM4
3
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
tl
CASE
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
9


▲Up To Search▲   

 
Price & Availability of HRFZ44N

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X